
SIMETRIX VERILOG-A MANUAL

VERSION 8.1

OCTOBER 2016

SIMETRIX VERILOG-A MANUAL

COPYRIGHT © SIMETRIX TECHNOLOGIES LTD. 1992-2016

SIMetrix Technologies Ltd.,
78 Chapel Street,
Thatcham,
Berkshire
RG18 4QN
United Kingdom

Tel: +44 1635 866395

Fax: +44 1635 868322

Email: support@simetrix.co.uk

Web: http://www.simetrix.co.uk

SIMetrix Verilog A Manual

mailto:support@simetrix.co.uk
http://www.simetrix.co.uk

Contents

Contents

1 Introduction 1
1.1 What Is Verilog-A? . 1
1.2 Verilog-A Language Reference Manual . 1

2 Using Verilog-A Compiler 2
2.1 Using Verilog-A with SIMetrix Schematics . 2
2.2 Defining Verilog-A Files in Netlist . 2
2.3 Messages . 3
2.4 .LOAD Full Syntax . 3
2.5 Verilog-A Cache . 4
2.6 Permananent .SXDEV Installation . 4

3 Writing Verilog-A Code 5
3.1 Overview . 5
3.2 Verilog-A Text Editor . 5
3.3 Hello World! . 5
3.4 A Simple Device Model . 7

3.4.1 Module Ports . 8
3.4.2 Branch Contributions . 8
3.4.3 Parameters . 8
3.4.4 Disciplines . 8

3.5 A Resistor . 9
3.6 A Soft Limiter . 10

3.6.1 Variables . 11
3.6.2 $finish . 11
3.6.3 Functions . 11
3.6.4 Local Parameters . 11
3.6.5 Parameter Limits . 12
3.6.6 Conditional Statements . 12

3.7 A Capacitor . 12
3.8 A Voltage Controlled Oscillator . 13
3.9 Digital Elements - Overview . 14
3.10 Digital Gate . 14

3.10.1 cross() Monitored Event . 15
3.10.2 transition() Analog Operator . 16

3.11 Butterworth Filter . 17
3.11.1 Arrays . 18
3.11.2 For Loops . 18
3.11.3 laplace_nd Function . 18

3.12 RC Ladder . 19
3.12.1 Vectors of Nodes . 20
3.12.2 Analog For Loops and genvars . 20
3.12.3 Compile-time Parameters . 21
3.12.4 See Also . 21

i
SIMetrix Verilog A Manual

Contents

4 Verilog-A Reference 22
4.1 Verilog-A Functions . 22

4.1.1 $abstime . 24
4.1.2 $bound_step . 24
4.1.3 $debug . 24
4.1.4 $discontinuity . 25
4.1.5 $display . 25
4.1.6 $fclose . 27
4.1.7 $fdebug . 27
4.1.8 $fdisplay . 28
4.1.9 $finish . 28
4.1.10 $fmonitor . 28
4.1.11 $fopen . 28
4.1.12 $fstrobe . 29
4.1.13 $fwrite . 29
4.1.14 $mfactor . 29
4.1.15 $monitor . 29
4.1.16 $param_given . 30
4.1.17 $port_connected . 30
4.1.18 $random . 30
4.1.19 $simparam . 31
4.1.20 $stop . 31
4.1.21 $strobe . 32
4.1.22 $table_model . 32
4.1.23 $temperature . 32
4.1.24 $vt . 32
4.1.25 $write . 33
4.1.26 abs . 33
4.1.27 absdelay . 33
4.1.28 ac_stim . 34
4.1.29 acos . 34
4.1.30 acosh . 34
4.1.31 analysis . 34
4.1.32 asin . 35
4.1.33 asinh . 35
4.1.34 atan . 35
4.1.35 atan2 . 35
4.1.36 atanh . 35
4.1.37 ceil . 35
4.1.38 cos . 35
4.1.39 cosh . 35
4.1.40 cross . 35
4.1.41 ddt . 37
4.1.42 ddx . 38
4.1.43 exp . 38
4.1.44 flicker_noise . 38
4.1.45 floor . 39
4.1.46 hypot . 39
4.1.47 idt . 39
4.1.48 laplace_nd . 39
4.1.49 laplace_np . 40
4.1.50 laplace_zd . 40
4.1.51 laplace_zp . 41
4.1.52 last_crossing . 41
4.1.53 limexp . 42
4.1.54 ln . 42

ii
SIMetrix Verilog A Manual

Contents

4.1.55 log . 42
4.1.56 max . 42
4.1.57 min . 42
4.1.58 pow . 42
4.1.59 sin . 42
4.1.60 sinh . 42
4.1.61 slew . 43
4.1.62 sqrt . 43
4.1.63 tan . 43
4.1.64 tanh . 43
4.1.65 timer . 43
4.1.66 transition . 44
4.1.67 white_noise . 45

4.2 Analog Operator Restrictions . 45

5 Implementation - vs LRM 47
5.1 Overview . 47
5.2 SIMetrix Verilog-A vs LRM 2.2 . 47

5.2.1 2.6 Strings . 47
5.2.2 2.8.1 . 47
5.2.3 3.2.2 Parameters - Value Range Specification . 47
5.2.4 3.2.3 Parameter Units and Descriptions . 47
5.2.5 3.4.2.2 Domain Binding . 47
5.2.6 3.4.2.3 Empty Disciplines . 48
5.2.7 3.4.2.4 Disciplines of Wires and Undeclared Nets 48
5.2.8 3.4.2.7 User Defined Attributes . 48
5.2.9 3.4.3.1 Net Descriptions . 48
5.2.10 3.4.3.2 Net Discipline Initial (Nodeset) Values 48
5.2.11 3.4.5 Implicit Nets . 48
5.2.12 3.5 Real Net Declarations . 48
5.2.13 3.6 Default Discipline . 48
5.2.14 3.7 Discipline Precedence . 48
5.2.15 3.8 Net compatibility . 48
5.2.16 3.9 Branches . 49
5.2.17 4.1.6 Case Equality Operator . 49
5.2.18 4.1.13 Concatenations . 49
5.2.19 4.2.3 Error Handling . 49
5.2.20 4.4.1 Restrictions on Analog Operators . 49
5.2.21 4.4.4 Time derivative Operator . 49
5.2.22 4.4.5 Time integral operator . 49
5.2.23 4.4.6 Circular Intergral Operators . 50
5.2.24 4.4.13 Z-transform filters . 50
5.2.25 4.5.1 Analysis . 50
5.2.26 4.5.2 DC analysis . 50
5.2.27 4.5.4.3 Noise_table . 50
5.2.28 4.6.1 Defining an Analog Function . 50
5.2.29 4.6.2 Returning a Value from an Analog Function 50
5.2.30 5.3.2 Indirect Branch Assignments . 50
5.2.31 6.7.5. Above Function . 50
5.2.32 7 Hierarchical Structures . 50
5.2.33 8 . 51
5.2.34 9 Scheduling Semantics . 51
5.2.35 10.1 Environment Parameter Functions . 51
5.2.36 10.2 $random Function . 51
5.2.37 10.2 $dist_ Functions . 51
5.2.38 10.4 Simulation Control System Tasks . 51

iii
SIMetrix Verilog A Manual

Contents

5.2.39 10.7 Announcing Discontinuity . 51
5.2.40 10.9 Limiting Functions . 51
5.2.41 10.10 Hierarchical System Parameter Functions 51
5.2.42 11.1 ‘default_discipline . 51
5.2.43 11.2 ‘default_transition . 51
5.2.44 11.6 ‘resetall . 52
5.2.45 11.7 Pre-defined Macros . 52
5.2.46 12, 13 . 52

5.3 SIMetrix Extensions . 52
5.3.1 In an Ideal World... 52
5.3.2 Analog Operator Syntax . 52
5.3.3 Instance Parameters . 53
5.3.4 Device Mapping . 53
5.3.5 Tolerances . 54
5.3.6 Analysis() Function . 54
5.3.7 $simparam() Function . 54
5.3.8 $fopen() Function . 54

5.4 Verilog-A Interaction . 54
5.4.1 Real-Time Noise . 54
5.4.2 Transient Snapshots . 55
5.4.3 Pseudo-Transient Analysis . 55

iv
SIMetrix Verilog A Manual

Chapter 1

Introduction

1.1 What Is Verilog-A?

Verilog-A is a language for defining analog models; it is suitable for defining behavioural models with a
high level of abstraction as well as highly detailed models for semiconductor devices.

Prior to the introduction of Verilog-A and other similar languages (e.g. VHDL-AMS and MAST), the
definition of such models could only be achieved, if at all, using subcircuits of controlled sources, arbitrary
sources and various semiconductor devices. This method is inflexible, clumsy and usually very inefficient.

Further, SIMetrix Verilog-A is a compiled language. This means that the Verilog-A code is compiled to a
binary executable program in the same way that built-in device models are implemented. This makes
Verilog-A models very fast.

The SIMetrix implementation of Verilog-A uses a compiler to translate the Verilog-A source into program
code using the ‘C’ language. This in turn is compiled into a DLL which is then loaded into the SIMetrix
memory image. Access to the verilog-A description is then made at the netlist level using models and
instance lines.

You do not need to install a ‘C’ compiler to use Verilog-A. SIMetrix Verilog-A is supplied with the
open-source ‘C’ compiler gcc using the mingw extensions. We have used a stripped down version of gcc
that includes only the essential files needed for this.

The SIMetrix Verilog-A compiler was developed by us; we do not license a third-party’s product, nor is it
based on open-source software. This means that we know it inside out and will be able to offer the same
high level of support that we have always offered with all our products.

1.2 Verilog-A Language Reference Manual

The language reference manual may be obtained from Verilog-A Language Reference Manual

The SIMetrix implementation is based on version 2.2.

1
SIMetrix Verilog A Manual

http://www.simetrix.co.uk/app/ext/veriloga.htm

Chapter 2

Using Verilog-A Compiler

2.1 Using Verilog-A with SIMetrix Schematics

SIMetrix has a simple feature that will create a schematic symbol for use with a Verilog-A definition. The
feature invokes the Verilog-A compiler using an option that tells it just to execute the first part of the
compilation process. This allows the script to learn some information about the Verilog-A file such as
module and port names. The script will ask you where you wish each pin to be located and after that will
create a symbol and place it on the schematic. The symbol will be decorated with all necessary properties
to interface the Verilog-A model to the simulator.

To use the script, create a Verilog-A definition, then execute the schematic menu Verilog-A | Construct
Verilog-A Symbol. Navigate to the Verilog-A file (extension .va) then close. Select pin locations as
requested. Image of symbol will appear for placement.

The symbol can be found for future use using Place | From Symbol Library then navigate to “Auto
Created Symbols -> Verilog-A Symbols”.

2.2 Defining Verilog-A Files in Netlist

Use the simulator statement ‘.LOAD’ to specify the Verilog-A source file. E.g.:

.LOAD resistor.va

This will invoke the Verilog-A compiler (va.exe) which will create one common ‘C’ file and one ‘C’ file
per module statement within the Verilog-A file. The ‘C’ files will then be compiled and linked using gcc to
produce the final DLL which has the extension .sxdev. These files are all placed in the directory
%APPDATAPATH%\SIMetrix600\vacache where %APPDATAPATH% is your application data directory.

Having compiled the va file, .LOAD will load the .sxdev file into the SIMetrix memory image. It will then
map the code within into the simulator’s model table making the new device ready for use.

To use the new device or devices, defined with Verilog-A module statements, you must specify a .MODEL
statement. These must be placed after the .LOAD statement. The format of the .MODEL statement should
be:

.MODEL modelname va-mod-name parameters

Where modelname is the model name referred to on the instance (see below), va-mod-name is the name of
the module in the Verilog-A source file and parameters are parameters defined using the Verilog-A
parameter keyword.

2
SIMetrix Verilog A Manual

2.3. Messages

To create instances of the new device create an instance line (or schematic symbol with appropriate
properties) that begins with one of the letters ‘N’, ‘P’, ‘W’, ‘U’ or ‘Y’. You can use other letters as long as
the number of terminals is compatible with the original use of that letter. For example, you can use the
letter ‘M’ as long as the device has four terminals - as a MOS device would have. But you must use one of
‘N’, ‘P’, ‘W’, ‘U’ or ‘Y’ for devices with more than 4 terminals or only a single terminal. ‘Q’ will work for
three or four terminals, but you should avoid using it as it is full of amiguities as a result of SPICE history.

When you start a new simulation, any sxdev files loaded in the previous run will be unloaded and the
model table entries removed.

2.3 Messages

When running a simulation, you will see a number of messages in the command shell. These are output by
the VA compiler, the MAKE utility and, if you are unlucky, the ‘C’ compiler.

Errors or warning output by the Verilog-A compiler will be displayed during this process.These will be in
the form:

*** ERROR *** (@'verilog-a-filename',linenum), error-message

If the problem is with the syntax, the message will say *** SYNTAX ERROR ***.

NOTE: Identifiers that you use in your Verilog-A code (e.g. variables, parameters, ports etc) may be
prefixed with an underscore when referenced in any warning or error message.

When you run a .VA file for the sescond and subsequent time without editing it, you will not see any
messages from the Verilog-A compiler.

2.4 .LOAD Full Syntax

.LOAD file [instparams=parameter_list] [nicenames=0|1] [goiters=goiters]
[ctparams=ctparams] [suffix=suffix] [warn=warnlevel]

file can specify either a Verilog-A fileor a .SXDEV file. If the extension is .SXDEV, no compilation will be
performed and the specified file will be loaded directly. The remaining options described above will not be
recognised in this case. Otherwise the build sequence described above will be initiated. Paths are relative
to the current working directory. Don’t use .VA file names containing spaces.

parameter_list is a list of parameter name separated by commas. There should be no spaces in this list.
Each parameter in this list will be defined as an instance parameter. See “Instance Parameters” on page 53
for details.

goiters specifies the number of global optimiser iterations. The default is 3. A higher number may improve
the execution speed of the code at the expense of a longer compilation time. In practice this will only have
a noticeable effect on very large verilog-a files. Setting the value to zero will disable the global optimiser.
This is likely to slow execution speed a little. The global optimiser is an algorithm that cleans up
redundant statements in the ‘C’ file.

ctparams defines ‘Compile-time parameters’ and is a list of comma-separated parameter name/value pairs
in the form name=value. Any parameters listed will be substituted with the constant value defined during
compilation as if it were entered as a literal constant in the verilog-a code. This feature is especially useful
for items such as array sizes and vectored port sizes. A considerably more efficient result will be produced
if the values of such items are known at compile time.

warnlevel sets a filter for warning messages. If set to zero, no warnings will be displayed. If set to 2, all
warnings will be displayed. The default is 1 which will cause most warnings to be displayed but will omit
those that are less serious.

3
SIMetrix Verilog A Manual

2.5. Verilog-A Cache

nicenames=0|1 is an advanced feature for debugging purposes. It tells the compiler to use meaningful
names in the ‘C’ file if possible. Otherwise it will used short names. There is a small risk of a name clash
in the ‘C’ file if this option is switched on.

2.5 Verilog-A Cache

SIMetrix will reuse existing Verilog-A binary files without recompiling if the source files have not
changed. It determines whether or not the file has changed by calculating an MD5 checksum on the source
files and comparing this with a value stored in the .sxdev file. While this method is slower than the more
conventional method of checking file dates, it is more robust and reliable.

This cache mechanism can save significant time if the VA definition is large. The hicum model, for
example, takes about 6 seconds to compile.

You can clear the cache at any time using the schematic menu Verilog-A | Clear Cache. This will delete
all files in the cache directory.

2.6 Permananent .SXDEV Installation

The .SXDEV files may be relocated to the plugins\devices directory in which case they become a built-in
device. Currently, you should not expect binary compatibility between versions. A Verilog-A license is
required to load a .sxdev file.

4
SIMetrix Verilog A Manual

3.2. Verilog-A Text Editor

Chapter 3

Writing Verilog-A Code

3.1 Overview

We will introduce Verilog-A by showing a number of examples. Each example introduces a new concept
or language feature. This is not a definitive reference of the language but we hope to demonstrate the most
commonly used features. The table below lists the examples used in this manual along with the path of the
files where you can find a read-to-run schematic and Verilog-A definition file.

Example File Location

Hello World! Examples/Verilog-A/Manual/Hello-world

A Simple Device Model Examples/Verilog-A/Manual/Gain-block

A Resistor Example/Verilog-A/Manual/Resistor

A Soft Limiter Example/Verilog-A/Manual/Soft-limiter

A Capacitor Example/Verilog-A/Manual/Capacitor

A Voltage Controlled Oscillator Example/Verilog-A/Manual/Vco

Digital Gate Example/Verilog-A/Manual/Gates

Butterworth Filter Example/Verilog-A/Manual/Butterworth-filter

RC Ladder - Loops, Vectored Nodes and
genvars

Example/Verilog-A/Manual/RC-ladder

3.2 Verilog-A Text Editor

SIMetrix includes a built-in Verilog-A text editor configured for Verilog-A syntax highlighting. To open a
new Verilog-A design, select menu File | New Verilog-A. To open an existing file, you can drag and drop
the file into the command shell message window or use menu File | Open.... Select VerilogA files from
the drop-down box in the bottom right corner.

3.3 Hello World!

It has become customary to instroduce any computer language with a “Hello world” program. That is a
program that simply prints “Hello World!”. While Verilog-A was not designed to perform this type of task,
it is nevertheless possible to write such a program. Here is an example:

5
SIMetrix Verilog A Manual

3.3. Hello World!

module hello_world ;

analog
begin

@(initial_step)
$strobe("Hello World!") ;

end
endmodule

You can try this using the following procedure:

1. Open a new Verilog-A design using menu File | New Verilog-A then enter the lines above. (This
will copy and paste from the PDF OK, but be aware that in general copying and pasting ASCII text
from PDFs can result in strange problems. In particular, watch out for ‘-’ characters. These aren’t
always what they seem.)

2. Save to a file called hello_world.va

3. Start SIMetrix if you have not already done so. Open an empty schematic sheet.

4. Save the schematic to any file name.

5. Select menu Verilog-A | Construct Verilog-A Symbol

6. Navigate to the file you created in step 2 above

7. Select OK

8. Place symbol that is created. It’s just a box with no pins

9. Setup a transient analysis with any stop time you like

10. Run simulation

The first time you run this, you will see messages relating to the compilation procedure. After that the
message “Hello World!” will be displayed in the command shell.

If you get any error messages, check the code you entered. The error message should point to the line
where the problem occurred. Be aware that sometimes the line number given may not be exact. The point
where the parser detects that something is wrong may occur one or two lines after the actual cause of the
problem. For example, if you omitted the ‘;’ on the line containing the $strobe call, you would the error
“Unexpected token ‘end”’ error reported for the following line or possibly even the line after that. The
‘end’ token would not be expected if the ‘;’ was missing but this is on the next line.

Although our hello world program does not do much, it does introduce a number of Verilog-A concepts:

1. Modules. All devices that can be instantiated as models and instances are defined as modules. In the
above example the module has the name hello_world. This name is used in the associated
.MODEL statement in the SIMetrix netlist to access this module.

2. The analog block denoted by the keyword analog. This is where the main body of the Verilog-A
definition is placed

3. Initial step event denoted by @(initial_step). The statement following this will be executed
only in the first step of the simulation, that is, the dc operating point phase. You might like to see
what happens if you remove this line. You can do this easily by ‘commenting it out’ which can be
done with to forward slashes like this:

//@(initial_step)

4. $strobe. This is known as a system task in the Verilog-A LRM (language reference manual). $strobe
outputs a message to the command shell. It can also output values in various format and behaves in a
similar way to the ‘C’ printf function. We will see more of this later.

6
SIMetrix Verilog A Manual

3.4. A Simple Device Model

3.4 A Simple Device Model

We will now show how to make a simple gain block. Here is the Verilog-A design:

`include "disciplines.vams"
module gain_block(in, out) ;

electrical in, out ;
parameter real gain=1.0 ;

analog
V(out) <+ V(in)*gain ;

endmodule

You may like to enter the above example in the same manner as the previous hello world example. We
suggest entering this circuit:

When using the menu Verilog-A | Construct Verilog-A Symbol for the above definition, you will
notice a dialog box appear asking the location for the device’s pins. You would not have seen this with the
hello world example as that device does not have any pins. Choose ‘left’ for ‘in’ and ‘right’ for ‘out’.

We have supplied the above pre-built. See Examples/Manual/gain-block. All the examples used in this
manual are available from Examples/Manual. However, you may find it more instructive to enter the code
and schematics manually. But we would advise against copying and pasting from this document as some
characters may not copy correctly. We suggest type in by hand - note that the quote character before
include is a ‘back tick’ - usually the key at the far left of the row of numbers on US, UK and other
keyboards.

Run the above in the usual way. You should see an output that follows the input; that is a 1V 1kHz sine
wave.

7
SIMetrix Verilog A Manual

3.4. A Simple Device Model

3.4.1 Module Ports

In the above definition we have introduced two ‘module ports’ to the module definition. These define
connection terminals and the generated symbol shows these as pins ‘in’ and ‘out’.

3.4.2 Branch Contributions

The line:

V(out) <+ V(in)*gain ;

defines the relationship between the module ports out and in. This is known as a branch contribution
and is one of the most important Verilog-A concepts. Branch contributions define a relationship that the
simulator must maintain between the ‘probes’ (V(in) in the above) on the right hand side and the
‘source’ (V(out) above) on the left hand side. They behave in the same way as arbitrary source devices.
The above, for example, is equivalent to a SIMetrix netlist line like this:

B1 out 0 v = V(in) * gain

Branch contributions, however, differ from arbitrary sources in that they are additive. Successive branch
contributions with the same left hand side add to each other. This applies to both voltage and current
sources. For example:

V(out) <+ V(in)*gain ;
V(out) <+ 1.0 ;

is the same as:

V(out) <+ V(in)*gain + 1.0 ;

The V() function in the above is known as an access function. Access functions may have one or two
arguments each of which must refer to a port or internal node. If two arguments are provided, V() accesses
the potential between the two nodes. If only a single node is supplied, it accesses the potential between
that node and ground.

The access function I() access the current flowing between its two nodes. As with the voltage access
function, if only a single node is provided, the second node is implicitly ground.

The access functions V() and I() are not defined as language keywords but are in fact defined by the
electrical discipline contained within the disciplines.vams file.

3.4.3 Parameters

parameter real gain=1.0 ;

defines a parameter and gives it a default value of 1.0. This value can be edited at the netlist level. If you
used a generated symbol or our pre-built example, double click the device U1, then enter:

gain=5

Now rerun the schematic. Notice the output amplitude increase to 5V peak.

3.4.4 Disciplines

Finally, you will notice two other lines not in the hello world example:

electrical in, out ;

8
SIMetrix Verilog A Manual

3.5. A Resistor

defines the discipline for the module ports in this case ‘electrical’. Verilog-A supports other disciplines
such as thermal, mechanical and rotational allowing simulation of physical processes other than electrical
and electronic. The definitions of these other disciplines are defined in the disciplines.vams file which is
included using the line:

`include "disciplines.vams"

Nearly all Verilog-A definitions include this line at the top of the file. We excluded it from the hello world
example as that did not need it.

3.5 A Resistor

In this example we define a simple resistor. A resistor is a device whose current is proportional to the
voltage difference between its terminals. This is defined in Verilog-A using a branch contribution as
follows:

I(p,n) <+ V(p,n)/resistance ;

This defines the current/voltage relationship that the simulator must maintain on the nodes p and n.
I(p,n) represents the current flowing from port p to port n and V(p,n) represents the potential
difference measured between nodes p and n.

Here is the full definition:

`include "disciplines.vams"

module va_resistor(p,n) ;

parameter real resistance = 1000.0 from (0.0:inf] ;
electrical p, n ;

analog
I(p,n) <+ V(p,n)/resistance ;

endmodule

In the above the resistance parameter has been given value range limits to prevent resistance value of
zero or below. A resistance of zero would lead to a divide-by-zero error.

Instead of blocking resistors with a value of zero, we could instead implement a zero resistance using a
zero voltage contribution. This is how:

`include "disciplines.vams"

module va_resistor(p,n) ;

parameter real resistance = 1000.0 ;
electrical p, n ;

analog
begin

if (resistance!=0.0)
I(p,n) <+ V(p,n)/resistance ;

else
V(p,n) <+ 0.0 ;

end

endmodule

9
SIMetrix Verilog A Manual

3.6. A Soft Limiter

Note the conditional statement starting if (resistance!=0.0). Notice also, that the analog block is
now enclosed with the keywords begin and end. These are not actually necessary in this case, but are
necessary where there is more than one statement in the analog block.

3.6 A Soft Limiter

This is a definition for a soft limiter device. This will pass the input signal through unchanged up to some
limit after which it will follow a decaying exponential in the form:

1 - exp(-(v-vlim))

The same in reverse occurs for the lower limit. Here is the full definition:

`include "disciplines.vams"
module soft_limiter(in, out) ;

electrical in, out ;
parameter real vlow=-1.0,

vhigh=1.0,
soft=0.1 from (0:1.0) ;

localparam real band = (vhigh-vlow)*soft,
vlow_1 = vlow+band,
vhigh_1 = vhigh-band ;

real vin ;

analog
begin

@(initial_step)
if (vhigh<vlow)
begin

$strobe("Lower limit must be less than higher limit") ;
$finish ;

end

vin = V(in) ;

if (vin>vhigh_1)
V(out) <+ vhigh_1+band*(1.0-exp(-(vin-vhigh_1)/band));

else if (vin<vlow_1)
V(out) <+ vlow_1-band*(1.0-exp((vin-vlow_1)/band)) ;

else
V(out) <+ vin ;

end
endmodule

See Examples/Manual/Soft-limiter example

The above example introduces the following new concepts:

1. Variables. We use vin to hold the value of V(in). In this example we have done this simply to
make the code a little more readable. But variables can store any value or expression and have a
much wider use

10
SIMetrix Verilog A Manual

3.6. A Soft Limiter

2. The $finish system task.

3. The exp function

4. Local parameters using the localparam keyword

5. Parameter value range limits using the from keyword. (Also used in the resistor previous)

The soft limit example also uses a conditional statements using if and else which we first saw with the
resistor example above.

3.6.1 Variables

Variables, such as vin in the example must be declared first. In the above example this declaration is the
line:

real vin ;

This declares the variable ‘real’. This is ‘real’ in the computing sense meaning that the value is stored
using floating point arithmetic and can take non-integer values. The alternative declaration is integer
which means the variable stores whole numbers. Variable declarations, like parameter declarations must
be placed within the module - endmodule block. They can be declared outside the analog block, as in
the example above, or they can be declared inside a named begin - end block. For example

begin : main
real vin ;
...

end

If declared this way, the variable may only be used within the begin - end block in which it was
declared.

3.6.2 $finish

The $finish system task aborts the simulation unconditionally.

3.6.3 Functions

Verilog-A has a range of mathematical functions built-in. In the above example we have used the exp
function. See “Verilog-A Functions” on page 22 for a complete list.

3.6.4 Local Parameters

A local parameter is one that cannot be changed by the user via the .MODEL statement or any other
means. Local parameters are a way of defining constant vaues as, unlike variables, they cannot be assigned
except in their declaration. In our example we declared the band local parameter as:

localparam real band = (vhigh-vlow)*soft

We could just as simply have defined a variable to do this. However, by using a local parameter we know it
can’t be subsequently modified. This aids readability but more importantly tells the compiler that it cannot
change allowing to optimise the result effectively.

11
SIMetrix Verilog A Manual

3.7. A Capacitor

3.6.5 Parameter Limits

Parameters can be given maximum and minimum limits. This is done using the from keyword. In the
above example:

soft=0.1 from (0:1.0)

defines the limits for soft from 0 to 1.0 exclusive. This means that any value greater than 0 and less than
1.0 will be accepted but the values 0 and 1.0 will not be allowed. You can also define inclusive limits using
a square bracket instead of a round parenthesis. E.g in the following 1.0 is allowed:

soft=0.1 from (0:1.0]

3.6.6 Conditional Statements

Conditional statements are in the form:

if (conditional-expression)
statement ;

else
statement ;

statement may be a single statement such as a branch contribution or it may be a collection of statements
enclosed by begin and end.

3.7 A Capacitor

To implement a capacitor we need a time derivative function. In Verilog-A this is achieved using the ddt
analog operator. A capacitor can be defined using the branch contribution statement:

I(p,n) <+ capacitance * ddt(V(p,n)) ;

Like the resistor, this defines the current/voltage relationship that the simulator must maintain on the nodes
p and n. However, this definition has time dependence.

Here is the complete definition for a capacitor:

`include "disciplines.vams"

module va_capacitor(p,n) ;

parameter real capacitance = 1n ;
electrical p, n ;

analog
I(p,n) <+ capacitance * ddt(V(p,n)) ;

endmodule

See Examples/Manual/Capacitor. Note there is another definition for a capacitor with an initial condition
parameter - capacitor_with_ic.va. This uses the time integration operator idt which allows the
specification of an initial condition.

12
SIMetrix Verilog A Manual

3.8. A Voltage Controlled Oscillator

3.8 A Voltage Controlled Oscillator

Verilog-A may be used to create signal sources. Here we show how to make a voltage controlled oscillator.

`include "disciplines.vams"
`include "constants.vams"

module vco(in, out) ;

parameter real amplitude = 1.0,
centre_frequency = 1K,
gain = 1K ;

parameter integer steps_per_cycle=20 ;

localparam real omegac = 2.0 * `M_PI * centre_frequency,
omega_gain = 2.0 * `M_PI * gain ;

electrical in, out ;

analog
begin : main

real vin, instantaneousFreq ;

vin = V(in) ;
V(out) <+ amplitude*sin(idt(vin*omega_gain+omegac,0.0)) ;

// Use $bound_step system task to limit time step
// This is to ensure that sine wave is rendered with
// adequate detail.
instantaneousFreq = centre_frequency + gain * vin ;
$bound_step (1.0 / instantaneousFreq / steps_per_cycle) ;

end
endmodule

This can be found in Examples/Manual/Vco

This model uses the idt analog operator to integrate frequency to obtain phase. The frequency is
calculated from omegac which is the constant term and vin*omega_gain which the voltage
controlled term.

A problem with sinusoidal signals is that in order to obtain adequate resolution, the time step must be
limited to a controlled fraction of the cycle time. In the above the parameter steps_per_cycle is used to
define a minimum number of steps per cycle. This is implemented using the $bound_step system task.
This tells the simulator the maximum time step it can use for the next time point. It can use a smaller step
if needed but must not use a larger step.

The above can suffer a problem if left to run for a very large number of cycles. The return value from the
idt operator increases continuously and eventually the size of this value will impact on the calculation
precision available leading to inaccuracy. The problem can be resolved using the idtmod operator.
However, this language feature has not yet been implemented in the SIMetrix Verilog-A. We expect to
offer this in a later release.

13
SIMetrix Verilog A Manual

3.9. Digital Elements - Overview

3.9 Digital Elements - Overview

Verilog-A can model digital devices as well as analog. This is useful in situations where some simple logic
function interfaces mostly with analog elements. An example is a phase detector in a phase-locked loop.
At least one of its inputs would often come from an analog source and its output would usually drive a
low-pass filter also implemented with analog components. Some phase detector designs employ a digital
state machine that would usually suit a digital event driven simulator. But if it interfaces with analog
devices, interface bridges would need to be connected to the analog signals. This complicates and slows
down the simulation. Using Verilog-A we can efficiently implement the entire function in the analog
domain.

We have provided an example of a phase detector; see Examples/phase_detector.

In this section we will show how to create some simple logic elements.

3.10 Digital Gate

Here is a definition for an AND gate

`include "disciplines.vams"

module and_gate(in1, in2, out);

electrical in1, in2, out ;

parameter real digThresh = 2.0,
digOutLow = 0.0,
digOutHigh = 5.0,
trise=10n,
tfall=10n ;

analog
begin : main

integer dig1, dig2, logicState ;

// Detect in1 threshold
@ (cross(V(in1)-digThresh, 0, 1n))

if (V(in1)>digThresh)
dig1 = 1 ;

else
dig1 = 0 ;

// Detect in2 threshold
@ (cross(V(in2)-digThresh, 0, 1n))

if (V(in2)>digThresh)
dig2 = 1 ;

else
dig2 = 0 ;

logicState = dig1 && dig2 ? digOutHigh : digOutLow ;
V(out) <+ transition(logicState , 0.0, trise, tfall) ;

end
endmodule

14
SIMetrix Verilog A Manual

3.10. Digital Gate

This example introduces two new concepts:

1. The cross event

2. The transition analog operator

3.10.1 cross() Monitored Event

The cross event function is used to detect when an input signal crosses its logic threshold. Consider the
line:

@ (cross(V(in1)-digThresh, 0, 1n))

This line both defines the event and also responds to the event when it is triggered. The arguments define
the event, while the statement that follows it is the action taken when the event is triggered.

The function has the following form:

cross(expr, edge, time_tol, expr_tol)

Only the first argument is compulsory.

expr expression to test. The event is triggered when the expression crosses zero.

edge 0, +1 or -1 to indicate edge. +1 means the event will only occur when expr
is rising, -1 means it will only occur while falling and 0 means it will occur
on either edge. Default=0 if omitted.

time_tol Time tolerance for detection of zero crossing. Unless the input is moving in
an exact linear fashion, it is not possible for the simulator to predict the pre-
cise location of the crossing point. But it can make an estimate and then cut
or extend the time step to hit it within a defined tolerance. time_tol defines
the time tolerance for this estimate. The event will be triggered when the
difference between the current time step and the estimated crossing point is
less than time_tol. If omitted or zero or negative, no timestep control will
be applied and the event will be triggered at the first natural time point after
the crossing point. See diagram below for an illustration of the meaning of
this parameter.

expr_tol Similar to time_tol but instead defines the tolerance on the input expression.
See dialog below.

Cross Event Function Behaviour

15
SIMetrix Verilog A Manual

3.10. Digital Gate

3.10.2 transition() Analog Operator

The transition function at the end is one of a class of functions called analog operators. The ddt and
idt functions seen earlier are also analog operators. The transition analog operator is designed to
handle signals that change in discrete steps such as the output of logic devices and digital to analog
converters. In the and gate example above, the output logic level can change instantaneously but the output
of a real device would typically follow a specified rise or fall time. The transition analog operator converts
the discrete input value to a continuous output value using specified rise and fall times. The function has
the following form:

transition(expr, td, rise_time, fall_time, time_tol)

expr Input expression.

td Delay time. This is a transport or stored delay. That is, all changes will be
faithfully reproduced at the output after the specified delay time, even if the
input changes more than once during the delay period. This is in contrast to
intertial delay which swallows activity that has a shorter duration than the
delay. Default=0.

rise_time Rise time of output in response to change in input.

fall_time Fall time of output in response to change in input.

time_tol Ignored. The LRM does not explicitly state what this is supposed to do and
we see no purpose for a tolerance parameter.

If fall_time is omitted and rise_time is specified, the fall_time will default to rise_time. If neither is
specified or are set to zero, a minimum but non-zero time rise/fall time is used. This is set to the value of
MINBREAK which is the minimum break point value. Refer .OPTIONS in the Simulator Reference
Manual/Command Reference/.OPTIONS for details of MINBREAK.

The transition analog operator should not be used for continuously changing input values; use the
slew or absdelay analog operators instead.

Transition Analog Operator Waveforms

16
SIMetrix Verilog A Manual

3.11. Butterworth Filter

3.11 Butterworth Filter

Here we present a butterworth filter with arbitrary order. SIMetrix already has something like this built-in,
but we show a Verilog-A version to demonstrate arrays, looping constructs and the Laplace analog
operators.

The design allows the user to specify the order of the filter using a model parameter. The filter itself is
implemented using the analog operator laplace_nd which provides a Laplace transfer function defined
by its numerator and denominator polynomial coefficients. To calculate the coefficients for the specified
order, we build an array for the denominator coefficients using a for loop. The array only needs to be
calculated once so we put this calculation in response to an initial_step event. (Actually it will be
recalculated on each dc operating point iteration which is not as efficient as it could be. This is an area that
we hope to address in a future revision.)

`include "disciplines.vams"
`include "constants.vams"

module laplace_butter(in,ref,out) ;

real res ;
electrical in, ref, out ;
parameter freq=1.0 ;
parameter integer order=5 ;

real scale, bPrev ;
// Denominator array size
real den[order:0] ;
integer k ;

analog
begin

// Calculate Butterworth coefficients
@ (initial_step)
begin

scale = 1.0/freq/2/`M_PI ;
bPrev = 1.0 ;
den[0] = 1.0 ;

for (k=1 ; k<order+1 ; k=k+1)
begin

bPrev = scale*cos((k-1.0)/order*(`M_PI*0.5))/
sin((k*0.5)/order*`M_PI) * bPrev ;

den[k] = bPrev ;

$strobe("den coeff \%d = \%g", k, den[k]) ;
end

end

// Actual Butterworth filter
res = laplace_nd(V(in,ref), {1.0}, den) ;
V(out,ref) <+ res ;

end
endmodule

See Examples/Manual/Butterworth-filter

17
SIMetrix Verilog A Manual

3.11. Butterworth Filter

This design introduces these language features:

1. Array variables

2. For loops

3. The lapalace_nd analog operator

3.11.1 Arrays

Verilog-A supports arrays of both variables and parameters. In the example above we use an array to store
the denominator coefficients for the laplace_nd analog operator. Array variables must be declared with
their range of allowed indexes using this syntax:

type array_name[low_index:high_index] ;

Where:

type real or integer

array_name name of array

low_index Minimum index allowed

high_index Maximum index allowed

low_index and high_index determine the number of elements in the array to be
high_index− low_index + 1.

3.11.2 For Loops

For loops use a syntax similar to the ‘C’ language. This is as follows:

for (initial_assignment ; test_expression ; loop_assignment)
statement

initial_assignment Assignment statement (in the form variable = expression) that is executed
just once on entry to the loop. Typically this would be an assignment that
assigns a loop counter variable a constant value. In the example it assigns
1 to the variable k.

test_expression Expression is evaluated at the start of each iteration around the loop before
statement. If the result of the evaluation is non-zero, statement will be
executed. If not the loop will be terminated.

loop_assignment Assignment statement that is executed after statement. Typically this would
be an assignment that increments or decrements a loop counter variable.In
the above it increments k by 1.

3.11.3 laplace_nd Function

The laplace_nd function implements a Laplace transfer function. This is in the form:

H(s) =
n0 + n1s+ n2s

2 + ...+ nms
m

d0 + d1s+ d2s2 + ...+ dmsm

where d0, d1, d2, ..., dm are the denominator coefficients and n0, n1, n2, ..., nm are the numerator
coefficients and the order is m.

18
SIMetrix Verilog A Manual

3.12. RC Ladder

The laplace_nd function is in the form:

laplace_nd (expr, num_coeffs, den_coeffs, ε)

Where

expr Input expression

num_coeffs Numerator coefficients. This can be entered as an array variable or as an
array initialiser. An array initialiser is a sequence of comma separated val-
ues enclosed with ‘{’ and ‘}’. E.g: { 1.0, 2.3, 3.4, 4.5}. The values do not
need to be constants.

den_coeffs Denominator coefficients in the same format as the numerator - see above.
In the example this is provided as the array den. The values in den are
calculated in the for loop.

ε Tolerance parameter currently unused.

If the constant term on the denominator (d0 in equation above) is zero, the laplace function must exist
inside a closed feedback loop. With a zero denominator, the DC gain is infinite; by putting the function
inside a loop, the simulator can maintain the input at zero providing a finite output. A singular matrix error
will result otherwise.

3.12 RC Ladder - Loops, Vectored Nodes and genvars

Verilog-A allows definitions to contain repeated elements defined using vectors of nodes. Here we present
an example that defines an RC network with any number of elements.

`include "discipline.h"

/* Model for an n-stage RC ladder network */
module rc_ladder(inode[0], inode[n]) ;

electrical [0:n] inode ;

/* The compile_time attribute is a SIMetrix extension and is
not part of the Verilog standard. compile_time parameters
must be defined at the time the module is compiled. Their
values can be specified on the .LOAD line in the netlist
using the "ctparams" parameter. E.g. ctparams="n=8"
If not specified on the .LOAD line, the default value
specified here will be used. */

(* type="compile_time" *) parameter integer n=16 ;
parameter r=1k ;
parameter c=1n ;

genvar i ;

analog
begin

for (i=0 ; i<=n-1 ; i=i+1)
begin

I(inode[i],inode[i+1]) <+(V(inode[i],inode[i+1]))/r;
I(inode[i+1]) <+ ddt(V(inode[i+1])*c) ;

end
end

endmodule

19
SIMetrix Verilog A Manual

3.12. RC Ladder

This design introduces the following language features:

1. Vectors of nodes

2. Analog for loops and genvars

3. Compile-time parameters. (This is a SIMetrix extension and not part of the Verilog-A specification)

3.12.1 Vectors of Nodes

Verilog-A allows nodes to be specified as vectors. This can be used to implement devices that have
multiple inputs or outputs (such as ADCs and DACs) as well as devices like the above example which has
multiple internal elements.

The Verilog-A specification allows the size of vectored nodes to be specified as a parameter that can be
assigned at run time. SIMetrix does allow this in some simple cases but this would not be accepted in the
above example. Usually, however, vectored node sizes (n in the above example) are specified as a constant
to be available at compile time. This can be done in a number of ways:

1. As a pre-processor constant such as

`define n 16

this must then be accessed using the back tick character, i.e. ‘n.

2. As a constant localparam parameter. These may not be set by the user and so are fixed in value
at compile time.

3. As a compile-time parameter. See below for details.

Vectors of nodes can be specified in the node discipline declaration. In the example above, this is the line:

electrical [0:n] inode ;

The nodes are accessed using square brackets enclosing a constant expression in the same way that array
variables are used. For example, inode[0] is the first node in the vectored node inode while inode[n] is the
last.

3.12.2 Analog For Loops and genvars

We saw for-loops in the butterworth filter example. Analog for loops are syntactically identical but use a
special type of variable called a genvar instead of a normal variable. Analog for loops are the only type of
loop where you can iterate through vectored nodes. They are also the only type of loop where you can use
analog operators.

genvars are inherited from the Verilog-A version 1.0 concept called generate statements. Generate
statements define a method of replicating a statement any number of times while increasing or decreasing
a controlling variable - the generate variable or genvar. In computer science this technique is often called
loop-unrolling. Generate statements are now considered obsolete and have been replaced by analog for
loops but the functionality is similar.

The Verilog-A language specification does not stipulate that analog for loops should be unrolled but it does
impose a number of restrictions on the use of genvars to make unrolling possible as long as all constant
values are available at compile time. Unrolling loops that refer to vectored nodes is considerably more
efficient than evaluation at run-time.

SIMetrix will unroll analog for loops if it can. If it can’t, because one or more values in the for-loop could
not be evaluated at compile-time, it will still attempt to implement the design but this process may fail in
which case an error message will be displayed. If it succeeds, a level 2 warning will be raised advising that
the design would be more efficient if some variables were constant.

20
SIMetrix Verilog A Manual

3.12. RC Ladder

3.12.3 Compile-time Parameters

Compile-time parameters are a SIMetrix extension and not part of the language specification.
Compile-time parameters may be assigned in the .LOAD statement in the netlist or they may be defined
using an attribute in the Verilog-A code, or both. This concept is in its infancy and we hope to develop it
further. The attribute in the code (this is the (* type="compile_time" *) prefixing the parameter
keyword) declares the parameter as compile-time and provides a default value. The value may be
overridden in the .LOAD statement in the netlist.

3.12.4 See Also

...the DAC example at Examples/DAC. This has a vectored module port with a size that can be specified at
run time via a model parameter.

21
SIMetrix Verilog A Manual

Chapter 4

Verilog-A Reference

The official definition of the Verilog-A language can be found in the Language Reference Manual version
2.2 which may be obtained from here: Verilog-A Language Reference Manual.

Here we present descriptions of all the functions that SIMetrix currently supports.

4.1 Verilog-A Functions

Name Return type In types Implemented?

$abstime real () Yes

$angle real () No

$bound_step none (real) Yes

$debug none ([real/integer/string...]) Yes

$discontinuity none ([integer]) Yes

$display none ([real/integer/string...]) Yes

$fclose none (integer) Yes

$fdebug none (integer, [real/integer/string...]) Yes

$fdisplay none (integer, [real/integer/string...]) Yes

$finish none ([integer]) Yes

$fmonitor none (integer, [real/integer/string...]) Yes

$fopen integer (string) Yes

$fstrobe none (integer, [real/integer/string...]) Yes

$fwrite none (integer, [real/integer/string...]) Yes

$hflip real () No

$limit real (access_func,string,real...) No

$mfactor real () Yes

$monitor none ([real/integer/string...]) Yes

$param_given integer identifier Yes

$port_connected integer identifier Yes

$random integer (integer,[string]) Yes

22
SIMetrix Verilog A Manual

http://www.simetrix.co.uk/app/ext/veriloga.htm

4.1. Verilog-A Functions

Name Return type In types Implemented?

$rdist_chi_square real (integer,real, [string]) No

$rdist_erlang real (integer,real,real, [string]) No

$rdist_exponential real (integer,real, [string]) No

$rdist_normal real (integer,real,real, [string]) No

$rdist_poisson real (integer,real, [string]) No

$rdist_t real (integer,real, [string]) No

$rdist_uniform real (integer,real,real,[string]) No

$realtime real ([real]) No

$simparam real (string,[real]) Yes

$stop none ([integer]) Yes

$strobe none ([real/integer/string...]) Yes

$table_model real Yes

$temperature real () Yes

$vflip real () No

$vt real ([real] Yes

$write none ([real/integer/string...]) Yes

$xposition real () No

$yposition real () No

above integer (real,[real,[real]]) No

abs copies args (real/int) Yes

absdelay real (real, real, [real]) Yes

ac_stim complex (string,[real,[real]]) Yes

acos real (real) Yes

acosh real (real) Yes

analysis integer (string,[...]) Yes

asin real (real) Yes

asinh real (real) Yes

atan real (real) Yes

atan2 real (real,real) Yes

atanh real (real) Yes

ceil real (real) Yes

cos real (real) Yes

cosh real (real) Yes

cross integer (real,[integer,[real,[real]]]) Yes

ddt real (real,[real/string]) Yes

ddx real (real,access_func) Yes

exp real (real) Yes

flicker_noise real (real,real,[string]) Yes

floor real (real) Yes

hypot real (real,real) Yes

23
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

Name Return type In types Implemented?

idt real (real,[real,[real,[real/string]]]) Yes

idtmod real (real,[real,[real,[real,[real/string]]]]) No

laplace_nd real (real,real-array,real-array,[real/string]) Yes

laplace_np real (real,real-array,real-array,[real/string]) Yes

laplace_zd real (real,real-array,real-array,[real/string]) Yes

laplace_zp real (real,real-array,real-array,[real/string]) Yes

last_crossing real (real,integer) Yes

limexp real (real) Yes

ln real (real) Yes

log real (real) Yes

max copies args (real/int,real/int) Yes

min copies args (real/int,real/int) Yes

noise_table real (real-array,[string]) No

pow real (real,real) Yes

sin real (real) Yes

sinh real (real) Yes

slew real (real,[real,[real]]) Yes

sqrt real (real) Yes

tan real (real) Yes

tanh real (real) Yes

timer integer (real,[real,[real]]) Yes

transition real (real,[real,[real,[real,[real]]]]) Yes

white_noise real (real,[string]) Yes

zi_nd real (real,real-array,real-array,real,[real,[real]]) No

zi_np real (real,real-array,real-array,real,[real,[real]]) No

zi_zd real (real,real-array,real-array,real,[real,[real]]) No

zi_zp real (real,real-array,real-array,real,[real,[real]]) No

4.1.1 $abstime

real time = $abstime ;

In transient analysis, returns the absolute simulation time in seconds. In all other analyses returns zero.

4.1.2 $bound_step

$bound_step(expression) ;

Does not return a value.

In transient analysis, instructs simulator to limit the next timestep to the value of expression.

4.1.3 $debug

24
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

$debug(list_of_arguments) ;

Does not return a value.

$debug is a display function that displays information in the command shell. See $display for a description
of its arguments. The $debug function writes to the command shell on every iteration. By contrast, other
display functions such as $display only write information when an iteration has converged.

See Also

“$fdebug” on page 27

“$display” on page 28

4.1.4 $discontinuity

$discontinuity [(constant_expression)] ;

Does not return a value.

Currently $discontinuity performs no action.

4.1.5 $display

$display(list_of_arguments) ;

Does not return a value.

$display displays text in the command shell when the current iteration converges.

The arguments can be any sequence of strings, integers or reals. The function will display these values in
the order in which they appear. The values will be output literally except for the interpretation of special
characters that may appear in string values. The special characters are backslash (‘\’) and percent (‘%’). ‘\’
is used to output special characters according to the following table:

\n Newline character

\t Tab character

\\ Literal \character

\” “ character

\ddd Character specified by the ASCII code of the 1-3 octal digits

The ‘%’ character must be followed by a character sequence that defines a format specification. In
execution, the ‘%’ and the format characters are substituted for the next value in the argument list,
formatted according to the string. User’s conversant with the ‘C’ programming language will have seen
this method in the printf function. For example, %d specifies that an integer be displayed in decimal
format. So, if count has a value of 453, the following:

$display("Count=\%d", count) ;

would display:

Count=453

in the command shell.

The following table shows the format codes available:

%h or %H Hexadecimal format

25
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

%d or %D Decimal format

%o or %O Octal format

%b or %B Binary format

%c or %C ASCII character. E.g a value of 84 would display an uppercase ‘T’

%m or %M Display hierarchical name of instance. This does not use one of the subse-
quent arguments

%s or %S Literal string. Expects a matching string argument

%e or %E Real number format. See Real Number Formats below

%f or %F Real number format. See Real Number Formats below

%g or %G Real number format. See Real Number Formats below

%r or %R Real number format. See Real Number Formats below

Real Number Formats

Real numbers have their own more complex format codes. These are in the form:

% [flag] [width] [.precision] type

where:

flag Characters ‘-’, ‘+’, ‘0’, space or ‘#’.

‘-’ means left align the result within given width (see width)

‘+’ means always prefix a sign even if positive

‘0’ means prefix with leading zeros

‘#’ forces a decimal point to be always output even if not required

width Specifies the minimum number of characters that will be displayed,
padding with spaces or zeros if needed

precision For e and f formats (see below) specifies the number of digits after the
decimal point that will be printed. If g or r format is specified, specifies the
maximum number of significant digits. Default if omitted is 6.

type e, E, f, F, g, G or r, R

e or E: Signed value displayed in exponential format. E.g.
1.23456E3

f or F: Signed value in decimal format. E.g. 1234.56.

Result will be very long if value is very large or very small.

g or G: Uses either f or e depending on which is most compact for give
precision.

r or R: displays in engineering units. Uses these scale factors:

T, G, M, K, k, m, u, n, p, f, a.

Notes

Currently the compiler will raise an error if the type of an argument does not match its position in a
corresponding format string. For example, the following will raise an error at compile time:

26
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

integer count ;
...
$display("Count=%g", count) ;

Note that the type (i.e. integer or real) of literal constants is determined by the way they are written. If a
decimal point is included or if exponential or engineering formats are used, the number is real. Otherwise
it is an integer. So ‘11’ is an integer, while 11.0 is a real.

See Also

“$fdisplay” on page 28

“$debug” on page 24

“$monitor” on page 29

4.1.6 $fclose

$fclose(file_descriptor) ;

Does not return a value.

Closes one or more file descriptors opened with $fopen.

See Also

“$fopen” on page 28

“$fdisplay” on page 28

“$fmonitor” on page 28

“$fdebug” on page 27

“$fwrite” on page 29

4.1.7 $fdebug

$fdebug(file_descriptor, list_of_arguments) ;

Does not return a value.

As $debug, but writes to a file or files defined by file_descriptor.

See Also

“$debug” on page 24

“$fopen” on page 28

“$display” on page 25

“$fdisplay” on page 28

27
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

4.1.8 $fdisplay

$fdisplay(file_descriptor, list_of_arguments) ;

Does not return a value.

As $display, but writes to a file or files defined by file_descriptor.

See Also

“$display” on page 25

“$fopen” on page 28

4.1.9 $finish

$finish [(n)]

Does not return a value.

Instructs simulator to abort. Currently the argument is ignored.

4.1.10 $fmonitor

$fmonitor(file_descriptor, list_of_arguments) ;

Does not return a value.

As $monitor, but writes to a file or files defined by file_descriptor.

4.1.11 $fopen

integer file_descriptor = $fopen(filename) ;

Returns an integer representing a multi-channel file descriptor. The descriptor can be used as an argument
to $fdebug, $fdisplay, $fmonitor, $fstrobe and $fwrite to write output to a file.

There are 31 possible channels each represented by a single bit in the 32 bit returned value. The top (most
significant bit) is reserved. The bottom (least siginificant) is used for standard output - i.e. displays to the
command shell. Each new call to $fopen will assign the next channel and set the relevant bit. By or’ing
together the results from multiple calls to $fopen, it is possible to write to more than one file at a time.

SIMetrix has a special extension to this function providing access to the list file. Use the filename
“<listfile>” and the descriptor returned will access it. The following code for example will create a file
descriptor that will provide writes to both the list file and a user file:

fd = fopen(” < listfile > ”); fd = fd|fopen("a_text_file.txt") ;

Further, by or’ing with 1 the file descriptor will also write to the command shell.

The file descriptor should be closed with $fclose.

See Also

“$fclose” on page 27

“$fdisplay” on page 28

28
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

4.1.12 $fstrobe

$fstrobe(file_descriptor, list_of_arguments) ;

Does not return a value.

As $strobe, but writes to a file or files defined by file_descriptor. Note that the $strobe and $display
functions are identical. For detailed documentation see “$display” on page 25.

See Also

“$strobe” on page 32

“$display” on page 25

“$fopen” on page 28

4.1.13 $fwrite

$fwrite(file_descriptor, list_of_arguments) ;

Does not return a value.

As $write, but writes to a file or files defined by file_descriptor. Note that the $write function is identical
to $display, except that it does add a new line character. For detailed documentation see “$display” on
page 25.

See Also

“$write” on page 33

“$display” on page 25

“$fopen” on page 28

4.1.14 $mfactor

real value = $mfactor ;

$mfactor does not take any arguments.

Returns the scaling factor applied to the instance. The scaling factor may be set using the $mfactor
parameter or using a subcircuit multiplier M. If both are used, the final scale factor will be the product of
these. Refer to the LRM for more details.

The LRM currently stipulates that compilers should raise an error if $mfactor is used inappropriately. This
is not currently implemented and $mfactor may be used for any purpose.

4.1.15 $monitor

$monitor(list_of_arguments) ;

Does not return a value.

$monitor behaves in a similar manner to $display except that it only outputs a result when there is a
change. In other words, the behaviour is the same as $display except that successive repeated messages
will not be output.

See Also

29
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

“$fmonitor” on page 28

“$display” on page 25

4.1.16 $param_given

integer value = $param_given(parameter_name) ;

parameter_name must be a parameter defined using the parameter keyword. Returns a non-zero
number if parameter_name has been specified in a .MODEL statement or on the instance line where
relevant.

4.1.17 $port_connected

integer value = $port_connected(port_name[[index_expression]]) ;

Returns a non-zero value if the specified port_name is connected externally. If the port is vectored, then
index_expression defining the element within the vector must also be specified. No error will be raised if
the index supplied is out of range; the function will simply return false (zero).

Currently, this function will only deem a port to be unconnected if no node is specified for it in the
instance netlist line. It will return true (non-zero) if a node name is supplied on the netlist line but is not
connected to any other component in the netlist. For example, consider a model for a four-terminal
BJTwith nodes ‘C’, ‘B’, ‘E’ and ‘S’ where ‘S’ is the substrate connection:

Q1 C B E S bjtmodelname

In the above the substrate connection is the node S. In this case $port_connected(S) would return true
regardless of whether or not S was connected to anything else. Now consider the three terminal case:

Q1 C B E bjtmodelname

In this case the substrate connection has been omitted from the netlist line and $port_connected will return
false (zero).

4.1.18 $random

integer value = $random [(seed)] ;

Returns a random number. This has three modes of operation according what if anything is supplied for
seed.

Mode 1: no seed

$random will return a new random number on each call with the system choosing the seed when random is
used for the first time.

Example:

value = $random ;

Mode 2: constant seed

seed may be either a literal constant or a constant expression dependent only on literal constants and
parameters. In this mode $random will return a fixed random value which will not update.

Example:

30
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

parameter seed=23 ;
...
value = $random(seed) ;

Mode 3: initialised integer variable seed

In this mode the seed variable will be updated on each call and a new random number will be generated.
The sequence of random numbers will thus be repeatable given the same initial value for seed.

Example:

real seed ;
...
@(initial_step)

seed = 23 ;
...
value = $random(seed) ;

In the above, the value of seed will be updated each time random is called.

4.1.19 $simparam

real value = $simparam(string [, default_value]) ;

Returns the value of a simulator parameter defined by string. Possible values of string are described below.
If an unknown string is supplied, $simparam will return the value of default_value if given. If no
default_value value is given, a run-time error will be raised.

The $simparam strings supported by SIMetrix are given as:

“gdev” Conductance added in junction GMIN stepping algorithm

“gmin” Value of GMIN options parameter

“simulatorSubversion” Minor version of SIMetrix simulator. E.g. for version 6.00, result will be
0, for 6.10 result will be 10 etc

“simulatorVersion” Major version of SIMetrix simulator. For version 6.00 this will be 6

“sourceScaleFactor” Scale factor used for sources in source stepping algorithm and pseudo tran-
sient analysis algorithm

“tnom” Value of TNOM options parameter

“ptaScaleFactor” Scale factor used for pseudo transient analysis algorithm

“option_name” Any name that may be used in a .OPTIONS statement and which has a real
value

The first six items in the above follow recommended names in the Verilog-A LRM. The remainder are
special to SIMetrix.

4.1.20 $stop

$stop [(n)] ;

The function does not return a value. Pauses simulation after completion of current step and leaves the
simulator in the same state as if the user pressed the pause button.

31
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

The argument n currently has no effect.

See Also

“$finish” on page 28

4.1.21 $strobe

$strobe(list_of_arguments) ;

Does not return a value.

Identical to the $display function.

See Also

“$fstrobe” on page 29

“$display” on page 25

4.1.22 $table_model

real value =
$table_model(table_inputs, table_data_source, table_control_string) ;

Please refer to section 10.12 of the Verilog-AMS Language Reference Manual version 2.2. This can be
obtained from http://www.eda.org/verilog-ams/htmlpages/lit.html. SIMetrix implements the LRM
specification in full.

$table_model is subject to the same restrictions as analog operators according to the Verilog-A version 2.2
LRM (See “Analog Operator Restrictions” on page 45). This restriction has been removed from the
version 2.3 standard and indeed there is no fundamental reason for the restriction as the $table_model
function does not need to store state information. Currently, SIMetrix complies with LRM 2.2 - i.e the
restrictions apply - but we plan to change this with a future release.

4.1.23 $temperature

real value = $temperature ;

Returns the current simulation temperature in Kelvin.

4.1.24 $vt

real value = $vt [(temperature_expression)] ;

Returns the thermal voltage at temperature_expression. If temperature_expression is not supplied, the
value at the current simulation temperature will be returned.

The thermal voltage is defined as

KT

q

Where, K is boltzmann’s constant, T is temperature (defined by temperature_expression) and q is the
charge on an electron. The values used for K and q are those that are used for other simulator models and
are the best values known at the time the original SPICE program was developed. Since that time the
accepted values for K and q have been altered slightly.

32
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

The values used are:

K = 1.3806226e-23

q = 1.6021918e-19

Currently accepted values:

K = 1.3806504e-23

q = 1.60217646e-19

4.1.25 $write

$write(list_of_arguments) ;

Does not return a value.

$write is identical to the $display function except that it does not add a new line character at the end of the
text. A new line may be explicitly inserted using the ‘\n’ sequence.

See Also

“$fwrite” on page 29

“$display” on page 25

4.1.26 abs

real value = abs(x) ;

Returns the absolute value of x.

4.1.27 absdelay

real value = absdelay(expression, tdelay [, maxdelay]) ;

Applies a transport delay to an input signal.

expression Input signal to delay.

tdelay Delay in seconds. If maxdelay is not supplied, only the value of tdelay
at the start of the simulation will be used and subsequent changes will be
ignored. Otherwise changes to tdelay will be used as long as they do not
exceed maxdelay.

maxdelay Maximum delay permitted. If omitted changes to tdelay will be ignored.
See tdelay above.

In DC analyses, tdelay is ignored and the return value of absdelay is expression. In AC analysis, the signal
defined by expression is phase-shifted according to:

output (ω) = input (ω) exp(−jω · tdelay)

In transient analysis, the signal is delayed by an amount equal to the instantaneous value of tdelay as long
as it is positive and less than maxdelay. absdelay stores the past history of expression up to maxdelay so
that it can retrieve the requested delayed point instantaneously.

absdelay is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

33
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

See Also

“slew” on page 43

“transition” on page 44

4.1.28 ac_stim

real value = ac_stim([analysis_name_string [, mag [, phase]]]) ;

Provides a stimulus for AC analysis, essentially identical the AC spec for a standard SPICE voltage source
or current source.

analysis_name_string Analysis name in which source is to be active. Currently this must be set to
“ac” or be omitted altogether.

mag Magnitude of source

phase Phase of source in radians

4.1.29 acos

real value = acos(x) ;

Returns inverse cosine in radians of x. Input range is +/- 1.

4.1.30 acosh

real value = acosh(x) ;

Returns the inverse hyperbolic cosine of x. Range is 1.0 to∞.

4.1.31 analysis

integer value = analysis(analysis_list) ;

Returns non-zero if the current analysis matches any of the analysis names in the argument list.
analysis_list is a list of strings as defined in the following table.

“static” Any analysis that solves a DC operating point. This includes the operat-
ing point analyses carried before other analyses such as transient. It also
includes DC sweep

“tran” Transient analysis. Includes the transient analysis used for pseudo transient
analysis

“ac” AC analysis

“dc” DC sweep

“noise” Noise analysis not including real time noise

“tf” Transfer fumction analysis

“pz” Pole zero analysis

“sens” Sensitivity analysis

“ic” The dc operating point analysis that precedes a transient analysis

“smallsig” Any small signal analysis: AC, noise and TF

34
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

“rtn” Real-time noise analysis

“pta” Pseudo transient analysis

4.1.32 asin

real value = asin (x) ;

Returns the inverse sine in radians of x. Range is +/- 1.0.

4.1.33 asinh

real value = asinh(x) ;

Returns the inverse hyperbolic sine of x. Range is −∞ to +∞.

4.1.34 atan

real value = atan(x) ;

Returns the inverse tangent in radians of x. Range is −∞ to +∞.

4.1.35 atan2

real value = atan2(x, y) ;

Returns the inverse tangent in radians of x/y. The function will return a meaningful value when y is zero.

4.1.36 atanh

real value = atanh(x) ;

Returns the inverse hyperbolic tangent of x. Range is +/- 1.0.

4.1.37 ceil

real value = ceil(x) ;

Returns the next integer value greater than x.

See Also

4.1.38 cos

real value = cos(x) ;

Returns the cosine of x expressed in radians. Range is −∞ to +∞.

4.1.39 cosh

real value = cosh(x) ;

Returns the hyperbolic cosine of x. Range is approx -709 to +709.

4.1.40 cross

35
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

cross(expression [,edge [,time_tol [,expr_tol]]])

cross is an event function and may only be used in event expressions.

36
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

expression expression to test. The event is triggered when the expression crosses zero.

edge 0, +1 or -1 to indicate edge. +1 means the event will only occur when expr is rising,
-1 means it will only occur while falling and 0 means it will occur on either edge.
Default=0 if omitted.

time_tol Time tolerance for detection of zero crossing. Unless the input is moving in an exact
linear fashion, it is not possible for the simulator to predict the precise location of the
crossing point. But it can make an estimate and then cut or extend the time step to
hit it within a defined tolerance. time_tol defines the time tolerance for this estimate.
The event will be triggered when the difference between the current time step and
the estimated crossing point is less than time_tol. If omitted or zero or negative, no
timestep control will be applied and the event will be triggered at the first natural time
point after the crossing point. See diagram below for an illustration of the meaning of
this parameter.

expr_tol Similar to time_tol but instead defines the tolerance on the input expression. See figure
below.

Cross Event Function Behaviour

cross stores state information in the same way as an analog operator. It is therefore subject to “Analog
Operator Restrictions” on page 45.

See Also

“timer” on page 43

“transition” on page 44

4.1.41 ddt

real value = ddt(expression) ;

Returns the time derivative of expression:

d

dt
expression

In DC analyses, ddt returns zero. In AC analysis, the function is defined by the relation:

37
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

output (ω) = input (ω) · jω

ddt is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“idt” on page 39

4.1.42 ddx

real value = ddx(expression, unknown_variable) ;

Performs symbolic differentiation on expression with respect to unknown_variable, which must be defined
in terms of an access function in one of the following forms:

potential_access_identifier(net_or_port_scalar_expression)

OR

flow_access_identifer(branch_identifier)

A potential_access_identifier is defined in the discipline declarations and is usually ‘V’ for the electrical
discipline. Similarly, the flow_access_identifier is usually ‘I’ for the electrical discipline.

net_or_port_scalar_expression can be a module port node or an internal node.

branch_identifier can be a branch defined with the branch keyword or an unnamed branch specifying the
nodes connected to the branch.

4.1.43 exp

real value = exp(x) ;

Returns the exponential of x. Range is −∞ to about 709.

See Also

“limexp” on page 42

4.1.44 flicker_noise

real value = flicker_noise(power, exp [, name]) ;

flicker_noise is only active in small-signal noise analysis and real-time noise analysis; in other analysis
modes it returns zero. It creates a noisy signal with a power of power at 1Hz which varies in proportion to
1/f exp.

name may be used to combine noise sources in the output report and vectors. Noise sources with the same
name in the same instance will be combined together.

In real-time noise analysis flicker_noise simply returns a random number whose statistical distribution
satisfies the characteistic of 1/f noise. In small signal analysis flicker_noise defines a 1/f noise source
that may be propagated to any output node.

See Also

“white_noise” on page 45

38
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

4.1.45 floor

real value = floor(x) ;

returns the next lower integer to x.

See Also

“ceil” on page 35

4.1.46 hypot

real value = hypot(x, y) ;

Returns
√
x2 + y2.

4.1.47 idt

real value = idt(expression [, initial_condition]) ;

Returns the time integral of expression.

initial_condition if supplied, sets the value of the function for DC analyses including the dc operating
point that precedes other analyses.

If initial_condition is not supplied, idt must exist inside a closed feedback loop. With no initial condition
the DC gain of idt is infinite; by putting the function inside a loop, the simulator can maintain the input at
zero providing a finite output. A singular matrix error will result otherwise.

idt is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“ddt” on page 37

4.1.48 laplace_nd

real value = laplace_nd(expr, num_coeffs, den_coeffs [, ε]) ;

Where

expr Input expression.

num_coeffs Numerator coefficients. This can be entered as an array variable or as an array ini-
tialiser. An array initialiser is a sequence of comma separated values enclosed with ‘’
and ‘’. E.g: 1.0, 2.3, 3.4, 4.5. The values do not need to be constants.

den_coeffs Denominator coefficients in the same format as the numerator - see above.

ε Tolerance parameter currently unused.

The laplace_nd analog operator implements a Laplace transfer function. This is in the form:

H(s) =
n0 + n1 · s+ ns · s2 + ...+ nm · sm

d0 + d1 · s+ d2 · s2 + ...+ dm · sm

where d0, d1, d2, ..., dm are the denominator coefficients and n0, n1, n2, ..., nm are the numerator
coefficients and the order is m.

39
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

If the constant term on the denominator (d0 in equation above) is zero, the laplace function must exist
inside a closed feedback loop. With a zero denominator, the DC gain is infinite; by putting the function
inside a loop, the simulator can maintain the input at zero providing a finite output. A singular matrix error
will result otherwise.

laplace_nd is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“laplace_np” on page 40

“laplace_zd” on page 40

“laplace_zp” on page 41

4.1.49 laplace_np

real value = laplace_np(expr, num_coeffs, poles [, ε]) ;

expr Input expression

zeros Zeros. See laplace_zp for details.

den_coeffs Denominator coefficients. See laplace_nd for details.

ε Tolerance parameter currently unused

laplace_np is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“laplace_nd” on page 39

“laplace_zd” on page 40

“laplace_zp” on page 41

4.1.50 laplace_zd

real value = laplace_zd(expr, zeros, den_coeffs [, ε]) ;

expr Input expression.

zeros Zeros. See laplace_zp for details.

den_coeffs Denominator coefficients. See laplace_nd for details.

ε Tolerance parameter currently unused.

laplace_zd is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“laplace_nd” on page 39

“laplace_np” on page 40

40
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

“laplace_zp” on page 41

4.1.51 laplace_zp

real value = laplace_zp(expr, zeros, poles [, ε]) ;

expr Input expression.

zeros Array of pairs of real numbers representing the zeros of the Laplace transform. Each
pair consists of a real part and an imaginary part with the real part first. Each zero
introduces a product term on the numerator in the form:

1− s

re + j · im
where re is the real part and im imaginary part. If a zero is complex (i.e. the imaginary
part is non-zero) then its complex conjugate must also be present. If both real and
imaginary parts are zero then the zero becomes just s.
The values can be entered as an array variable or as an array initialiser. An array
initialiser is a sequence of comma separated values enclosed with ‘{’ and ‘}’. E.g:
1.0, 2.3, 3.4, 4.5. The values do not need to be constants.

poles Array of pairs of real numbers representing the poles of the Laplace transform. Each
pair consists of a real part and an imaginary part with the real part first. Each pole
introduces a product term on the denominatr in the form:

1− s

re + j · im
where re is the real part and im imaginary part. If a pole is complex (i.e. the imaginary
part is non-zero) then its conjugate must also be present. If both real and imaginary
parts are zero then the pole becomes just s.
The values can be entered as an array variable or as an array initialiser. An array
initialiser is a sequence of comma separated values enclosed with ‘{’ and ‘}’. E.g:
1.0, 2.3, 3.4, 4.5. The values do not need to be constants.

ε Tolerance parameter currently unused.

laplace_zp is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“laplace_nd” on page 39

“laplace_np” on page 40

“laplace_zd” on page 40

4.1.52 last_crossing

real value = last_crossing(expression, direction) ;

last_crossing returns the time in seconds when expression last crossed zero. First order interpolation is
used to estimate the time of the crossing. direction controls the direction of the crossing. If +1 then the
most recent positive transition is returned. If -1, the most recent negative transition and if zero the most
recent in either direction is returned.

41
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

last_crossing returns a negative number if expression has not crossed zero since the start of the simulation.
SIMetrix Verilog-A last_crossing implementation also returns a negative number for DC analyses but this
is not defined in the standard.

last_crossing is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

4.1.53 limexp

real value = limexp(x) ;

Returns the exponential of x. limexp limits its change in output from iteration to iteration in order to
improve convergence. In situations where its return value is not the true exponential of x it will force
further iterations. The iteration will only be accepted when the result is the true value of exp(x). Thus,
limexp can be seen as a direct replacement for exp but with improved convergence. But note that limexp is
an analog operator and is therefore subject to “Analog Operator Restrictions” on page 45.

See Also

“exp” on page 38

4.1.54 ln

real value = ln(x) ;

Returns the natural logarithm of x. Range is 0.0 to∞.

4.1.55 log

real value = log(x) ;

Returns the logarithm to base 10 of x. Range is 0.0 to∞.

4.1.56 max

real value = max(x, y) ;

Returns x or y whichever is larger. Equivalent to (x>y ? x : y)

4.1.57 min

real value = min(x, y) ;

Returns x or y whichever is smaller. Equivalent to (x<y ? x : y)

4.1.58 pow

real value = pow(x, y) ;

Returns xy . if x is less than zero, y must be an integer. If x = 0, y must be greater than zero.

4.1.59 sin

real value = sin(x) ;

Returns the sine of x given in radians. Range −∞ to∞.

4.1.60 sinh

42
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

real value = sinh(x) ;

Returns the hyperbolic sine of x. Range is approx -709 to +709.

4.1.61 slew

real value = slew(expression [, slew_pos [, slew_neg]]) ;

Implements a slew rate limiter. slew_pos is expected to be positive and slew_neg is expected to be
negative. If slew_neg is not specified or greater than or equal to zero, it assumes a value of -slew_pos. If
neither slew_pos or slew_neg is present, expression is passed through to value unchanged.

slew limits the positive and negative rate of change of its return value to slew_pos and slew_neg
respectively.

slew is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“absdelay” on page 33

“transition” on page 44

4.1.62 sqrt

real value = sqrt(x) ;

Returns the square root of x. Range is 0 to∞. Although valid, x = 0 should be avoided and if possible
code included to prevent x = 0. This is because the first derivative of sqrt at zero is infinite and
convergence at this value can be problematic.

4.1.63 tan

real value = tan(x) ;

Returns the tangent of x given in radians. Range is −∞ to∞.

4.1.64 tanh

real value = tanh(x) ;

Returns the hyperbolic tangent of x. Range is −∞ to∞.

4.1.65 timer

timer(time [, period [, time_tol]])

timer is an event function and may only be used in an event statement in the form:

@(timer(...))
statement ;

statement is executed when the event is triggered.

timer sets a future event to occur at a specified time either just once or repeating at a specified period.

The event is first scheduled at time. If period is specified and is greater then zero, subsequent events will
also be scheduled at time + n*period where n is a positive integer.

43
SIMetrix Verilog A Manual

4.1. Verilog-A Functions

Usually the specified event will be scheduled at exactly the time specified. However, the analog simulator
will not allow time points to be forced too close together as this can lead to numerical problems as well as
unnecessarily long simulation times. For this reason, the simulator may schedule the event slightly later
than specified if the time point is to close to an existing time point, perhaps set by another device. The
time_tol argument controls the tolerance of the event time. The simulator will always schedule the event so
that it is within time_tol of the requested time. If time_tol is not specified the event will be scheduled after
the requested time but not more than the amount specified by the MINBREAK simulaion parameter.

See Also

“cross” on page 35

4.1.66 transition

real value = transition(expr[, td[, rise_time[, fall_time [, time_tol]]]]);

The transition analog operator converts the discrete input value to a continuous output value using
specified rise and fall times.

Its arguments are:

expr Input expression.

td Delay time. This is a transport or stored delay. That is, all changes will be faithfully
reproduced at the output after the specified delay time, even if the input changes more
than once during the delay period. This is in contrast to inertial delay which swallows
activity that has a shorter duration than the delay. Default=0.

rise_time Rise time of output in response to change in input.

fall_time Fall time of output in response to change in input.

time_tol Currently ignored.

If fall_time is omitted and rise_time is specified, the fall_time will default to rise_time. If neither is
specified or are set to zero, a minimum but non-zero time rise/fall time is used. This is set to the value of
MINBREAK which is the minimum break point value. Refer .OPTIONS in the Simulator Reference
Manual/Command Reference/.OPTIONS for details of MINBREAK.

The transition analog operator should not be used for continuously changing input values; use the slew or
absdelay analog operators instead.

44
SIMetrix Verilog A Manual

4.2. Analog Operator Restrictions

transition is an analog operator and is subject to “Analog Operator Restrictions” on page 45.

See Also

“absdelay” on page 33

“slew” on page 43

4.1.67 white_noise

real value = white_noise(power [, name]) ;

white_noise is only active in small-signal noise analysis and real-time noise analysis; in other analysis
modes it returns zero. It creates a noisy signal with a power of power and a flat frequency distribution.

name may be used to combine noise sources in the output report and vectors for small-signal noise
analysis. name is ignored with real-time noise analysis. Noise sources with the same name in the same
instance will be combined together.

In real-time noise analysis white_noise simply returns a random number whose statistical distribution
satisfies the characteistic of Gaussian noise. In small signal analysis white_noise defines a noise source
that may be propagated to any output node.

See Also

“flicker_noise” on page 38

4.2 Analog Operator Restrictions

A number of functions are classed as analog operators. These functions store state information. That is,
their return value depends on previous history and not just on the current value of its arguments. Because
of this, analog operators are subject to some restrictions on where they may be used. These restrictions are
as follows:

45
SIMetrix Verilog A Manual

4.2. Analog Operator Restrictions

1. Analog operators may not be used inside a conditional statement (if or case) if the conditional
expression controlling that statement could change during the course of a transient analysis. For
example, the following is not permitted

if (V(n1)>0)
I(out) <+ ddt(cap*V(out)) ;

In the above V(n1)>0 could change in a transient analysis if the voltage on node n1 rises above or
below zero. This means that ddt would only get executed some of the time and so its state history
would not always be correct.

The following is permitted

paramter integer enable_cap = 0 ;
...
if (enable_cap)

I(out) <+ ddt(cap*V(out)) ;

this is OK because enable_cap is a parameter and will have a fixed value during the course of a
transient analysis. So either ddt will always be executed or it will never be executed. Both
scenarios will work correctly.

2. Analog operators are not permitted in repeat or while loops nor are they permitted in for loops
that are not analog-for loops.

Analog operators are permitted in analog for loops. These are for loops controlled by a genvar
controlling variable. This is explained in “Analog For Loops and genvars” on page 20.

The analog operator restrictions apply to the following functions:

“$table_model” on page 32 (But see note in documentation for function)

“absdelay” on page 33

“cross” on page 35

“ddt” on page 37

“idt” on page 39

“laplace_nd” on page 39

“laplace_np” on page 40

“laplace_zd” on page 40

“laplace_zp” on page 41

“last_crossing” on page 41

“limexp” on page 42

“slew” on page 43

“transition” on page 44

46
SIMetrix Verilog A Manual

Chapter 5

Implementation - vs LRM

5.1 Overview

Here we describe how SIMetrix Verilog-A compares with the stadard as defined in Language Reference
Manual 2.2. Full details are below: SIMetrix Verilog-A vs LRM 2.2. For SIMetrix extensions, see
“SIMetrix Extensions” on page 52.

5.2 SIMetrix Verilog-A vs LRM 2.2

In the following we have highlighted areas where the SIMetrix Verilog-A compiler is not compliant with
the LRM 2.2 standard.

5.2.1 2.6 Strings

String variables are not supported. This is compliant with the Annex C ‘Analog Language Subset’

5.2.2 2.8.1

desc and units attributes may be included but will not be functional.

5.2.3 3.2.2 Parameters - Value Range Specification

Only the first from specification will be functional. Subsequent exclude specifications will be accepted by
the compiler but will have no effect.

5.2.4 3.2.3 Parameter Units and Descriptions

Syntax for “desc” and “units” is recognised but non-functional.

Non-standard SIMetrix attribute “instance” has been implemented. This defines the parameter as an
instance parameter, that is, its value can be set on the device line. See “Instance Parameters” on page 53.

5.2.5 3.4.2.2 Domain Binding

Anything other than “domain continuous” will raise an error.

47
SIMetrix Verilog A Manual

5.2. SIMetrix Verilog-A vs LRM 2.2

5.2.6 3.4.2.3 Empty Disciplines

Implemented but non-functional

5.2.7 3.4.2.4 Disciplines of Wires and Undeclared Nets

Not supported

5.2.8 3.4.2.7 User Defined Attributes

Accepted but non-functional

5.2.9 3.4.3.1 Net Descriptions

Not implemented. This will lead to a syntax error if used.

5.2.10 3.4.3.2 Net Discipline Initial (Nodeset) Values

Not implemented. This will lead to a syntax error if used.

5.2.11 3.4.5 Implicit Nets

Not meaningful as hierarchical structures are not yet implemented.

5.2.12 3.5 Real Net Declarations

Not supported in Verilog-A

5.2.13 3.6 Default Discipline

Not supported in Verilog-A

5.2.14 3.7 Discipline Precedence

Not meaningful as hierarchical structures are not yet implemented.

5.2.15 3.8 Net compatibility

As hierarchical structures are not yet implemented, this is mostly not relevant.

But this is partially implemented within the simulator. If you connect different disciplines together you
will get a warning. But the inherited disciplines will not be compatible, only the same disciplines may be
inter-connected. ... and you only get a warning not an error.

48
SIMetrix Verilog A Manual

5.2. SIMetrix Verilog-A vs LRM 2.2

5.2.16 3.9 Branches

Compliant for scalars only. Currently named vector branches are not supported. Unnamed branches are
however fully supported.

Discipline compatibility is checked, but it seems that the discipline for each node in a branch must be
identical. The spec requires them to be ‘compatible’ which is not the same thing.

Minor issue: if a branch is unused then the discipline of each node will not be checked at all and no error
will be raised if they are incompatible. This is not defined in the standard.

5.2.17 4.1.6 Case Equality Operator

Not supported in Verilog-A

5.2.18 4.1.13 Concatenations

Array initialisers are supported. Replication multiplier is not supported.

5.2.19 4.2.3 Error Handling

Not correctly implemented.

Its possible that this may never be implemented to the letter of the standard. While attempting to iterate to
convergence, it is not at all uncommon for maths functions to be overflow or to receive invalid arguments.
When this happens, SIMetrix reduces the step (whatever that step may be) and tries again. This algorithm
is often successful.

Complying with the most literal interpretation of this would be undesirable as it would mean some
simulations failing when they may have been perfectly solveable.

5.2.20 4.4.1 Restrictions on Analog Operators

SIMetrix Verilog-A is mostly compliant with this section with the exception detailed below.

Analog operators (such as ddt, transition etc) are not allowed in places where their execution could
be dependent on values that change during the course of a simulation. This is because analog operators
store state information which could become invalid. SIMetrix does not always implement this restriction
correctly and there are situation where it will allow you to use an analog operator but shouldn’t.

5.2.21 4.4.4 Time derivative Operator

Compliant except tolerance is currently ignored.

5.2.22 4.4.5 Time integral operator

idt(expr) - compliant

idt(expr,ic) - compliant

Others not implemented.

49
SIMetrix Verilog A Manual

5.2. SIMetrix Verilog-A vs LRM 2.2

5.2.23 4.4.6 Circular Intergral Operators

Not implemented.

5.2.24 4.4.13 Z-transform filters

Not implemented.

5.2.25 4.5.1 Analysis

Compliant except for “nodeset”

5.2.26 4.5.2 DC analysis

Compliant except for “nodeset”

5.2.27 4.5.4.3 Noise_table

Not implemented

5.2.28 4.6.1 Defining an Analog Function

Compliant except cannot use local parameters

5.2.29 4.6.2 Returning a Value from an Analog Function

Partially compliant. Can use return value for output. Output via passed argument is not supported.

5.2.30 5.3.2 Indirect Branch Assignments

Not implemented

5.2.31 6.7.5. Above Function

Not implemented

5.2.32 7 Hierarchical Structures

In general, hierarchical structures are not supported by the SIMetrix Verilog-A implementation and this is
the most siginicant feature omitted at this time. However, much of the functionality provided by this
feature may be achieved via the netlist, so this should not impact on the usefulness of the compiler too
much. We do intend to implement this in a future version.

This section of the standard does include the syntax for module definitions and this is of course fully
supported. This is covered by the opening paragraphs of section 7.1. The rest of the section is not
implemented.

50
SIMetrix Verilog A Manual

5.2. SIMetrix Verilog-A vs LRM 2.2

5.2.33 8

Not implemented in Verilog-A

5.2.34 9 Scheduling Semantics

Most of this section is concerned with Verilog-AMS which is the mixed-signal version and so is not
relevant.

5.2.35 10.1 Environment Parameter Functions

$realtime is not supported. All others are compliant.

5.2.36 10.2 $random Function

Supported for first argument only. ‘type_string’ argument is not supported.

5.2.37 10.2 $dist_ Functions

Not supported

5.2.38 10.4 Simulation Control System Tasks

Compliant except argument to functions are ignored.

5.2.39 10.7 Announcing Discontinuity

Accepted but doesn’t actually do anything

5.2.40 10.9 Limiting Functions

Compliant using built-in “pnjlim”. User functions not implemented.

5.2.41 10.10 Hierarchical System Parameter Functions

$mfactor implemented. Others are not

5.2.42 11.1 ‘default_discipline

Not implemented

5.2.43 11.2 ‘default_transition

Not implemented

51
SIMetrix Verilog A Manual

5.3. SIMetrix Extensions

5.2.44 11.6 ‘resetall

Not implemented

5.2.45 11.7 Pre-defined Macros

Not implemented

5.2.46 12, 13

Not implemented

5.3 SIMetrix Extensions

5.3.1 In an Ideal World...

... any standard would be so carefully designed and thought out that nobody would need to make
non-standard extensions. It is our intention to make the SIMetrix Verilog-A implementation follow the
standard as closely as possible so that anyone who writes Verilog-A code will be able to use it with another
implementation.

While that is our idealistic intention, reality never allows ideals. Verilog-A has quite a few little limitations
that we would not want to impose on our users. Some of these we have already addressed and made
non-standard extensions to do so. These are detailed below.

We will endeavour in the long run to make such extensions in a manner that would allow a source file to
work with other Verilog-A simulators without modification.

5.3.2 Analog Operator Syntax

According to the syntax specification, analog operators, e.g. ddt(), limexp(), white_noise(), may only be
used in a standalone manner and may not be embedded in expressions. For example, this is allowed:

V(n1, n2) <+ ddt(C*I(n1,n2)) ;

but this isn’t:

V(n1, n2) <+ C*ddt(I(n1,n2)) ;

But you would be allowed to do this:

dd = ddt(I(n1,n2)) ;
V(n1, n2) <+ C * dd ;

This limitation doesn’t make any sense. It might make sense if any variable that an analog operator was
assigned to was required to have a discipline defined. Then, the we could make sense of what tolerances to
use for ddt() operations for example. But such a requirement is not present, indeed there is no method of
assigning a discipline to a variable. So tolerance for ddt() is somewhat hit and miss anyway.

The later language reference manual version 2.3 does in fact not impose the above restrictions. It’s
possible that these restrictions are a consequence of errors in the definition in the language and not actually
intentional.

Currently the $limit function remains subject to the above limitation. But we plan to change this in a future
revision.

52
SIMetrix Verilog A Manual

5.3. SIMetrix Extensions

5.3.3 Instance Parameters

The Verlog-A language does not distinguish between instance parameters and model parameters. An
instance parameter is one that can be defined on the device line on a per instance basis whereas a model
parameter is one defined in a .MODEL statement. The most flexible implementation is one that allows
both, with the instance parameter taking precedence if both are specified by the user. However this method
has a cost in terms of increased memory usage per instance. While memory consumption may not seem to
be a big issue, it can impact on performance. The less memory used, the more likely that the processor will
find what it wants in the cache. For this reason it is desirable to minimise the number of instance
parameters.

The SIMetrix Verilog-A implementation provides two methods of defining instance parameters: one in the
verilog-A source file and the other on the command line of va.exe which in turn can be passed from
.LOAD.

To define an instance parameter in the .VA file, prefix the parameter key word with the special attribute
‘type’ with a value of “instance”. This is how it should look:

(* type="instance" *) parameter a = 1 ;

To define on .LOAD, add the parameter “instparams=parameter_list” where parameter_list is a comma
separated list of parameter names.

If a parameter is defined as an instance parameter, it will also be available as a model parameter. If both
are specified, the instance value will take precedence.

5.3.4 Device Mapping

You may control how the new device is represented in SIMetrix using a device mapping. This does the
same as the sxcfg file. Mappings are applied as a module attribute in the form:

(* Mappings="mapping_defs" *)

This should prefix the “module” keyword.

mapping_def is a semi-colon delimited list of mapping definitions. Each mapping definition is itself a
comma delimited list of attibutes in the following order:

model-type-name,level-number,device-letter,default-parameter,version

Where:

model-type-name The name used in the .MODEL statement.

level The LEVEL parameter value in the .MODEL statement.

device-letter The device letter to use for this device.

default-parameter A single parameter name and value. This is intended to be used to define device
polarity. E.g. “pnp=1” might define a PNP BJT. This is useful to allow the defi-
nition of BJTs and MOS devices using conventional NPN/PNP or NMOS/PMOS
model type names.

version Value of VERSION parameter.

For example, the HICUM device is defined with the following mapping:

(* Mappings="hicum_211,0;npn,8,Q,pnp=0,;pnp,8,Q,pnp=1," *)

This has three mappings. You can use hicum_211 with no level parameter to define a model. In this case
the pnp parameter would need to be set for a PNP device. Alternatively you can use NPN as a model type
name along with LEVEL=8 for an NPN device, or PNP with LEVEL=8 for a PNP device.

53
SIMetrix Verilog A Manual

5.4. Verilog-A Interaction

5.3.5 Tolerances

The Verilog-A language only allows for absoulte tolerances to be hardwired in the VA source file. This
means for example, that absolute current tolerance, must be specified as a fixed constant which cannot be
changed in the .OPTIONS line or anywhere else.

SIMetrix provides a workaround for this using the special values $abstol, $vntol, $chgtol and $fluxtol.
These can be used to define absolute tolerances in electrical nature definitions. These are already used in
the standard discipline header files supplied with the SIMetrix Verilog-A compiler.

5.3.6 Analysis() Function

Additional analyis types:

“sens” sensitivity analysis

“tf” transfer function analysis

“pta” pseudo-transient analysis

“smallsig” small signal analysis

“rtn” real time noise analysis

5.3.7 $simparam() Function

Standard types supported by SIMetrix:

“gdev”

“gmin”

“simulatorSubversion”

“simulatorVersion”

“sourceScaleFactor” - includes pseudo transient scale factor

“tnom”

Additional SIMetrix extensions:

“ptaScaleFactor” - as “sourceScaleFactor” but functional in pseudo transient analysis only. Default = 1.0.

In addition you can specify any option setting defined using .OPTIONS. E.g. $simparam(“reltol”) will
return the value of the RELTOL option.

5.3.8 $fopen() Function

Use the argument “<listfile>” to write to the list file. This is the file created by every simulation with the
extension .OUT.

5.4 Verilog-A Interaction with SIMetrix Features

5.4.1 Real-Time Noise

Real-time noise, while not unique to SIMetrix, remains a feature that can only be found on a few
simulators. Because of this, standards such as Verilog-A do not account for it or support it in any way. The
Verilog-A LRM simply says that transient noise should be implemented by the $random function.

54
SIMetrix Verilog A Manual

5.4. Verilog-A Interaction

The SIMetrix Verilog-A compiler does fully support the real-time noise feature and the regular
small-signal noise analog operators such as white_noise and flicker_noise will correctly create noise
signals in transient analysis with real time noise enabled without requiring any special support in the
Verilog-A code.

5.4.2 Transient Snapshots

In general it is best to assume that transient snapshots will not work with Verilog-A devices. They will in
fact work with some depending on what analog operators and/or system functions are used.

5.4.3 Pseudo-Transient Analysis

Pseudo transient analysis will work correctly with Verilog-A devices provided they are not energy sources.
Put another way, if all output sources are zero when all input probes are zero, PTA will work. If there are
any sources that are non-zero with zero inputs then PTA performance may be compromised. In this
situation you should use the $simparam("sourceScaleFactor") system function to scale energy
producing outputs. For example a 5V fixed voltage source should look like this:

V(n1,n2) <+ 5*$simparam("sourceScaleFactor") ;

$simparam("sourceScaleFactor") returns a value from 0.0 to 1.0 representing the supply ramp in pseudo
transient as well as DC source stepping.

It would be possible for the compiler to automatically add this. Currently this isn’t done as this will not
necessarily be beneficial if the device is not energy producing and could lead to a singular matrix condition
in some cases. For this reason we currently put the onus on you the user to define PTA behaviour.

55
SIMetrix Verilog A Manual

Copyright © SIMetrix Technologies Ltd. 1992-2016

SIMetrix 8.1 Verilog A Manual

	Introduction
	What Is Verilog-A?
	Verilog-A Language Reference Manual

	Using Verilog-A Compiler
	Using Verilog-A with SIMetrix Schematics
	Defining Verilog-A Files in Netlist
	Messages
	.LOAD Full Syntax
	Verilog-A Cache
	Permananent .SXDEV Installation

	Writing Verilog-A Code
	Overview
	Verilog-A Text Editor
	Hello World!
	A Simple Device Model
	Module Ports
	Branch Contributions
	Parameters
	Disciplines

	A Resistor
	A Soft Limiter
	Variables
	$finish
	Functions
	Local Parameters
	Parameter Limits
	Conditional Statements

	A Capacitor
	A Voltage Controlled Oscillator
	Digital Elements - Overview
	Digital Gate
	cross() Monitored Event
	transition() Analog Operator

	Butterworth Filter
	Arrays
	For Loops
	laplace_nd Function

	RC Ladder
	Vectors of Nodes
	Analog For Loops and genvars
	Compile-time Parameters
	See Also

	Verilog-A Reference
	Verilog-A Functions
	$abstime
	$bound_step
	$debug
	$discontinuity
	$display
	$fclose
	$fdebug
	$fdisplay
	$finish
	$fmonitor
	$fopen
	$fstrobe
	$fwrite
	$mfactor
	$monitor
	$param_given
	$port_connected
	$random
	$simparam
	$stop
	$strobe
	$table_model
	$temperature
	$vt
	$write
	abs
	absdelay
	ac_stim
	acos
	acosh
	analysis
	asin
	asinh
	atan
	atan2
	atanh
	ceil
	cos
	cosh
	cross
	ddt
	ddx
	exp
	flicker_noise
	floor
	hypot
	idt
	laplace_nd
	laplace_np
	laplace_zd
	laplace_zp
	last_crossing
	limexp
	ln
	log
	max
	min
	pow
	sin
	sinh
	slew
	sqrt
	tan
	tanh
	timer
	transition
	white_noise

	Analog Operator Restrictions

	Implementation - vs LRM
	Overview
	SIMetrix Verilog-A vs LRM 2.2
	2.6 Strings
	2.8.1
	3.2.2 Parameters - Value Range Specification
	3.2.3 Parameter Units and Descriptions
	3.4.2.2 Domain Binding
	3.4.2.3 Empty Disciplines
	3.4.2.4 Disciplines of Wires and Undeclared Nets
	3.4.2.7 User Defined Attributes
	3.4.3.1 Net Descriptions
	3.4.3.2 Net Discipline Initial (Nodeset) Values
	3.4.5 Implicit Nets
	3.5 Real Net Declarations
	3.6 Default Discipline
	3.7 Discipline Precedence
	3.8 Net compatibility
	3.9 Branches
	4.1.6 Case Equality Operator
	4.1.13 Concatenations
	4.2.3 Error Handling
	4.4.1 Restrictions on Analog Operators
	4.4.4 Time derivative Operator
	4.4.5 Time integral operator
	4.4.6 Circular Intergral Operators
	4.4.13 Z-transform filters
	4.5.1 Analysis
	4.5.2 DC analysis
	4.5.4.3 Noise_table
	4.6.1 Defining an Analog Function
	4.6.2 Returning a Value from an Analog Function
	5.3.2 Indirect Branch Assignments
	6.7.5. Above Function
	7 Hierarchical Structures
	8
	9 Scheduling Semantics
	10.1 Environment Parameter Functions
	10.2 $random Function
	10.2 $dist_ Functions
	10.4 Simulation Control System Tasks
	10.7 Announcing Discontinuity
	10.9 Limiting Functions
	10.10 Hierarchical System Parameter Functions
	11.1 `default_discipline
	11.2 `default_transition
	11.6 `resetall
	11.7 Pre-defined Macros
	12, 13

	SIMetrix Extensions
	In an Ideal World...
	Analog Operator Syntax
	Instance Parameters
	Device Mapping
	Tolerances
	Analysis() Function
	$simparam() Function
	$fopen() Function

	Verilog-A Interaction
	Real-Time Noise
	Transient Snapshots
	Pseudo-Transient Analysis

